
Real-Time Clustering for Large Sparse Online Visitor Data
Gromit Yeuk-Yin Chan1, Fan Du2, Ryan Rossi2, Anup Rao2, Eunyee Koh2, Claudio T. Silva1, Juliana Freire1

1 New York University 2 Adobe

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Online Visitor Behavior are Large and Sparse

2

. . .

. . .

Millions of online
customers everyday

Predefined traits

How to identify similar online behavior? ➔ Cluster the similar customers!

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Interactive Cluster Analysis Is Important

3

Marketing Analyst Identify optimal clusters Multi-level clusters

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Interactive Analysis Is Important

4

Marketing Analyst Identify optimal clusters Multi-level segments

Interactive Data Analysis

(playing with different parameters)

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Challenges as a Data Platform Provider

§ Lots of recalculations

§ To find the “best” clusters, users need to try different combinations of parameters.

§ Resource Utilization

§ Each time a clustering is started from scratch, a job is submitted to the distributed system.

5

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Challenges as a Data Platform Provider

§ Lots of recalculations

§ To find the “best” clusters, users need to try different combinations of parameters.

§ Resource Utilization

§ Each time a clustering is started from scratch, a job is submitted to the distributed system.

6

Solution 1

lightweight and fast end-to-end clustering

(e.g. K Means)

Solution 2

Pre-compute a hierarchy of cluster membership

(e.g. linkage clustering)

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Challenges as a Data Platform Provider

§ Lots of recalculations

§ To find the “best” clusters, users need to try different combinations of parameters.

§ Resource Utilization

§ Each time a clustering is started from scratch, a job is submitted to the distributed system.

7

Solution 1

lightweight and fast end-to-end clustering

(e.g. K Means)

Solution 2

Pre-compute a hierarchy of cluster membership

(e.g. linkage clustering)

The quality of interactive analysis will be affected if the result
does not arrive within 500ms (Liu & Heer TVCG 2014)

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Motivation

§ Linkage Clustering (main technique to construct a hierarchy)
§ Requires a pairwise distance matrix

§ Impossible in terms of memory and time (O(n
2
)) for moderate size data

§ Application to Distributed System
§ Parallel algorithm

§ Even data distribution among the computation nodes.

8

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Motivation

§ Linkage Clustering (main technique to construct a hierarchy)
§ Requires a pairwise distance matrix

§ Impossible in terms of memory and time (O(n
2
)) for moderate size data

§ Application to Distributed System
§ Parallel algorithm

§ Even data distribution among the computation nodes.

9

Can we create linkage without all pairwise similarity
calculations in the distributed system?

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. 10

Density Peaks Clustering

10

§ Density Peaks (DP) Clustering

§ Density: number of neighbors around a point.

§ Assumption: if a point’s closest higher density
point is far away, the point is likely to be a

cluster center.

§ Parameter: cutoff distance (dcutoff)

Rodriguez, Alex, and Alessandro Laio. "Clustering by fast search
and find of density peaks." Science 344.6191 (2014): 1492-1496.

density

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. 11

Density Peaks Clustering

11

Consider a 1-D example, we want to group the points with 2 clusters.

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. 12

Density Peaks Clustering

12

Consider an 1-D example, we want to group the points with 2 clusters.

(Closest neighbor with higher density)

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. 13

Density Peaks Clustering

13

Consider a 1-D example, we want to group the points with 2 clusters.

(Closest neighbor with higher density)

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Density Peaks Clustering

14

§ Density Peaks (DP) Clustering Algorithm

1. Calculate density ρ

2. Calculate shortest distance of higher density Points δ

3. Sort the elements by density, then assign them to cluster same as the nearest

neighbor of higher density.

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Density Peaks Clustering

15

§ Density Peaks (DP) Clustering Algorithm

1. Calculate density ρ

2. Calculate shortest distance of higher density Points δ

3. Sort the elements by density, then assign them to cluster same as the nearest

neighbor of higher density. O(n)

O(n
2
)

O(n
2
)

Now the question:
How to make the preprocessing faster?

Slow

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Locality Sensitive Hashing for Neighbor Querying

16

h1

h2

h3

h4

Locality-sensitive hashing (LSH)

hashes similar items to the same

hash “bucket” with high probability.

The greater number of times two

items are hashed in the same

bucket (collision), the higher the

similarity they are.

bucket

Hash
function

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Applying LSH to Density Peaks Calculation

17

h1

h2

h3

h4

To calculate the density ρ of each

point, we query the points with

high number of collisions.

bucket

Hash
function

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Applying LSH to Density Peaks Calculation

18

h1

h2

h3

h4

To calculate the density ρ of each

point, we query the points with

high number of collisions.

To retrieve distance δ of the

nearest neighbor, we query the

points with at least one collisions.

If a point does not have any queried

result, we directly compare it with

points with highest density.

bucket

Hash
function

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Applying LSH to Density Peaks Calculation

19

h1

h2

h3

h4

After the query, we also have the

following information:

Exact similarity between the points

Probability of collision between the points

Thus, it is possible to calculate the join
size estimation to refine the density
and the accuracy of nearest neighbor
query. (Zhang et. al. TKDE 2016)

bucket

Hash
function

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Parallelizing LSH Query in Spark

§ Finding the items that collide with each other is a parallel process.

20

: bucket 1

: bucket 1

: bucket 3

: bucket 5

h1()

h1()

h1()

h1()

SELF JOIN By Bucket
(Shuffle)

Item 1 Item 2

< Cartesian Join >

partitions

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

h1()

h1()

h1()

h1()

§ A straightforward JOIN can lead to uneven data distributions.

Parallelizing LSH Query in Spark

21

: bucket 1

: bucket 1

: bucket 3

: bucket 5

h1()

h1()

SELF JOIN By Bucket
(Shuffle)

: bucket 1

: bucket 1

. . .

Similar Points

Idling

Bottleneck

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

h1()

h1()

h1()

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization

22

: bucket 1

: bucket 1

: bucket 1

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

h1()

h1()

h1()

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization

23

: bucket 1

: bucket 1

: bucket 1

Random Keys

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

h1()

h1()

h1()

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization

24

: bucket 1

: bucket 1

: bucket 1

h1()

h1()

h1()

: bucket 1

: bucket 1

: bucket 1

h1()

h1()

h1()

: bucket 1

: bucket 1

: bucket 1

Replicate 1

Replicate 2

Random Keys

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

h1()

h1()

h1()

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization

25

: bucket 1

: bucket 1

JOIN By Bucket and Salt Keys

: bucket 1

h1()

h1()

h1()

: bucket 1

: bucket 1

: bucket 1

h1()

h1()

h1()

: bucket 1

: bucket 1

: bucket 1

Replicate 1

Replicate 2

Random Keys

+

More Even
Distribution

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

h1()

h1()

h1()

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization

26

: bucket 1

: bucket 1

JOIN By Bucket and Salt Keys

: bucket 1

h1()

h1()

h1()

: bucket 1

: bucket 1

: bucket 1

h1()

h1()

h1()

: bucket 1

: bucket 1

: bucket 1

Replicate 1

Replicate 2

Random Keys

+ =

More Even
Distribution

Same Cartesian
Join Result

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The second stage to compute the Density Peaks can also be parallelized.

Group By Operations for Density and Distance

27

GROUP BY
nodes on the left

(Shuffle) SUM for density ρ

MIN for distance δ

FILTER
1. by similarity for density ρ
2. by density for distance δ

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The second stage to compute the Density Peaks can also be parallelized.

Group By Operations for Density and Distance

28

GROUP BY
nodes on the left

(Shuffle) SUM for density ρ

MIN for distance δ

FILTER
1. by similarity for density ρ
2. by density for distance δ

Bottleneck

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The second stage to compute the Density Peaks can also be parallelized.

Salting Strategies for Group By Operations

29

Random
keys

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The second stage to compute the Density Peaks can also be parallelized.

Salting Strategies for Group By Operations

30

GROUP BY
nodes on the left + random keys

(Shuffle)

SUM for density ρ
MIN for distance δ

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The second stage to compute the Density Peaks can also be parallelized.

Salting Strategies for Group By Operations

31

GROUP BY
nodes on the left + random keys

(Shuffle)

SUM for density ρ
MIN for distance δ

GROUP BY
nodes on the left

(Shuffle)

SUM for density ρ
MIN for distance δ

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The second stage to compute the Density Peaks can also be parallelized.

Salting Strategies for Group By Operations

32

GROUP BY
nodes on the left + random keys

(Shuffle)

SUM for density ρ
MIN for distance δ

GROUP BY
nodes on the left

(Shuffle)

SUM for density ρ
MIN for distance δ

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

33

Random Keys

Replicates

JOIN

. . .

GROUP BY

SUM for density ρ
MIN for distance δ

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

34

Random Keys

Replicates

JOIN

. . .

GROUP BY

Instead of taking all data, we replace it with

replicate for a small batch.

SUM for density ρ
MIN for distance δ

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

35

Random Keys

Replicates

JOIN

. . .

GROUP BY

SUM for density ρt
MIN for distance δt

Instead of taking all data, we replace it with

replicate for a small batch.

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

36

Random Keys

Replicates

JOIN

. . .

GROUP BY

SUM for density ρ
MIN for distance δ

At batch t,

ρt = SUM + ρt-1
δt = min(MIN, δt-1)Instead of taking all data, we replace it with

replicate for a small batch.

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Tradeoff between Number of Batches and Shuffles

37

The greater number of batches, the more

shuffle stages are needed.

The greater number of batches, the fewer

chances to have long bottlenecks and large

shuffle data.

∴ While increasing number of batches can

reduce the memory needed, there is an

equilibrium in runtime.

The equilibrium depends on hardware

specifications.

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

User Interface for Interactive Visitor Clustering

38

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

User Interface for Interactive Visitor Clustering

39

Interactively segment
the visitors into 3 groups

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

User Interface for Interactive Visitor Clustering

40

Further split a
selected segment

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

User Interface for Interactive Visitor Clustering

41

Inspect the useful
traits inside a

destinated segment

© 2018 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Conclusions and Future Work

§ Applying LSH and DP clustering to enable interactive clustering on sparse
online visitor data.

§ Designing speed up strategies for clustering pipeline in a distributed
environment.

§ Future Work:
§ Further reduce the uneven data distribution in LSH Join

§ The increasing number of hash tables in LSH worsen the data distribution easily.

42

Thank You

Gromit Yeuk-Yin Chan, Fan Du, Ryan A. Rossi, Anup B. Rao, Eunyee Koh, Cláudio T. Silva, and Juliana Freire. 2020. Real-Time Clustering for Large Sparse Online
Visitor Data. In Proceedings of The Web Conference 2020 (WWW ’20). Association for Computing Machinery, New York, NY, USA, 1049–1059.

Twitter: @GromitC
Email: gromit.chan@nyu.edu

