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Online Visitor Behavior are Large and Sparse

2

. . .

. . .

Millions of online 
customers everyday

Predefined traits

How to identify similar online behavior? ➔ Cluster the similar customers!
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Interactive Cluster Analysis Is Important
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Marketing Analyst Identify optimal clusters Multi-level clusters
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Interactive Analysis Is Important
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Marketing Analyst Identify optimal clusters Multi-level segments

Interactive Data Analysis

(playing with different parameters)
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Challenges as a Data Platform Provider

§ Lots of recalculations

§ To find the “best” clusters, users need to try different combinations of parameters.

§ Resource Utilization 

§ Each time a clustering is started from scratch, a job is submitted to the distributed system.

5
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Solution 1

lightweight and fast end-to-end clustering

(e.g. K Means)

Solution 2

Pre-compute a hierarchy of cluster membership

(e.g. linkage clustering)  
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Solution 1

lightweight and fast end-to-end clustering

(e.g. K Means)

Solution 2

Pre-compute a hierarchy of cluster membership

(e.g. linkage clustering)  

The quality of interactive analysis will be affected if the result 
does not arrive within 500ms (Liu & Heer TVCG 2014)
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Motivation

§ Linkage Clustering (main technique to construct a hierarchy)
§ Requires a pairwise distance matrix

§ Impossible in terms of memory and time (O(n
2
)) for moderate size data

§ Application to Distributed System
§ Parallel algorithm

§ Even data distribution among the computation nodes.
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Can we create linkage without all pairwise similarity 
calculations in the distributed system? 
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Density Peaks Clustering
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§ Density Peaks (DP) Clustering

§ Density: number of neighbors around a point.

§ Assumption: if a point’s closest higher density 
point is far away, the point is likely to be a 

cluster center.

§ Parameter: cutoff distance (dcutoff)

Rodriguez, Alex, and Alessandro Laio. "Clustering by fast search 
and find of density peaks." Science 344.6191 (2014): 1492-1496.

density
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Density Peaks Clustering

11

Consider a 1-D example, we want to group the points with 2 clusters.
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Consider an 1-D example, we want to group the points with 2 clusters.

(Closest neighbor with higher density)
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Density Peaks Clustering
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§ Density Peaks (DP) Clustering Algorithm

1. Calculate density ρ

2. Calculate shortest distance of higher density Points δ

3. Sort the elements by density, then assign them to cluster same as the nearest 

neighbor of higher density.
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Density Peaks Clustering
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§ Density Peaks (DP) Clustering Algorithm

1. Calculate density ρ

2. Calculate shortest distance of higher density Points δ

3. Sort the elements by density, then assign them to cluster same as the nearest 

neighbor of higher density. O(n)

O(n
2
)

O(n
2
)

Now the question:
How to make the preprocessing faster?

Slow



© 2018 Adobe Systems Incorporated.  All Rights Reserved.  Adobe Confidential.

Locality Sensitive Hashing for Neighbor Querying
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h1

h2

h3

h4

Locality-sensitive hashing (LSH) 

hashes similar items to the same 

hash “bucket” with high probability.

The greater number of times two 

items are hashed in the same 

bucket (collision), the higher the 

similarity they are.

bucket

Hash 
function
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Applying LSH to Density Peaks Calculation
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h1

h2

h3

h4

To calculate the density ρ of each 

point, we query the points with 

high number of collisions.

bucket

Hash 
function
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Applying LSH to Density Peaks Calculation
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h1

h2

h3

h4

To calculate the density ρ of each 

point, we query the points with 

high number of collisions.

To retrieve distance δ of the 

nearest neighbor, we query the 

points with at least one collisions.

If a point does not have any queried 

result, we directly compare it with 

points with highest density.

bucket

Hash 
function



© 2018 Adobe Systems Incorporated.  All Rights Reserved.  Adobe Confidential.

Applying LSH to Density Peaks Calculation
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h1

h2

h3

h4

After the query, we also have the 

following information:

Exact similarity between the points

Probability of collision between the points

Thus, it is possible to calculate the join 
size estimation to refine the density 
and the accuracy of nearest neighbor 
query. (Zhang et. al. TKDE 2016)

bucket

Hash 
function
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Parallelizing LSH Query in Spark

§ Finding the items that collide with each other is a parallel process.

20

: bucket 1

: bucket 1

: bucket 3

: bucket 5

h1(       )

h1(       )

h1(       )

h1(       )

SELF JOIN By Bucket 
(Shuffle)

Item 1 Item 2

< Cartesian Join >

partitions
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h1(       )

h1(       )

h1(       )

h1(       )

§ A straightforward JOIN can lead to uneven data distributions.

Parallelizing LSH Query in Spark
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: bucket 1

: bucket 1

: bucket 3

: bucket 5

h1(       )

h1(       )

SELF JOIN By Bucket 
(Shuffle)

: bucket 1

: bucket 1

. . .

Similar Points

Idling

Bottleneck
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h1(       )

h1(       )

h1(       )

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization
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: bucket 1

: bucket 1

: bucket 1
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: bucket 1

: bucket 1

: bucket 1

Random Keys
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: bucket 1
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h1(       )
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h1(       )

h1(       )

h1(       )

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization
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: bucket 1

: bucket 1

JOIN By Bucket and Salt Keys 

: bucket 1

h1(       )

h1(       )

h1(       )

: bucket 1

: bucket 1

: bucket 1

h1(       )

h1(       )

h1(       )

: bucket 1

: bucket 1

: bucket 1

Replicate 1

Replicate 2

Random Keys

+

More Even
Distribution
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h1(       )

h1(       )

h1(       )

§ Create Random JOIN keys to ’’scatter’’ the data

Salting Strategies to Increase Parallelization

26

: bucket 1

: bucket 1

JOIN By Bucket and Salt Keys 

: bucket 1

h1(       )

h1(       )

h1(       )

: bucket 1

: bucket 1

: bucket 1

h1(       )

h1(       )

h1(       )

: bucket 1

: bucket 1

: bucket 1

Replicate 1

Replicate 2

Random Keys

+ =

More Even
Distribution

Same Cartesian 
Join Result
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§ The second stage to compute the Density Peaks can also be parallelized.

Group By Operations for Density and Distance

27

GROUP BY 
nodes on the left

(Shuffle) SUM for density ρ

MIN for distance δ

FILTER
1. by similarity for density ρ
2. by density for distance δ
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Group By Operations for Density and Distance
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GROUP BY 
nodes on the left

(Shuffle) SUM for density ρ

MIN for distance δ

FILTER
1. by similarity for density ρ
2. by density for distance δ

Bottleneck
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§ The second stage to compute the Density Peaks can also be parallelized.

Salting Strategies for Group By Operations

29

Random
keys
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Salting Strategies for Group By Operations
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GROUP BY 
nodes on the left + random keys

(Shuffle)

SUM for density ρ
MIN for distance δ
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GROUP BY 
nodes on the left + random keys

(Shuffle)

SUM for density ρ
MIN for distance δ

GROUP BY 
nodes on the left

(Shuffle)

SUM for density ρ
MIN for distance δ
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§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

33

Random Keys

Replicates

JOIN

. . .

GROUP BY

SUM for density ρ
MIN for distance δ
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§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

34

Random Keys

Replicates

JOIN

. . .

GROUP BY

Instead of taking all data, we replace it with 

replicate for a small batch.

SUM for density ρ
MIN for distance δ
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§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline

35

Random Keys

Replicates

JOIN

. . .

GROUP BY

SUM for density ρt
MIN for distance δt

Instead of taking all data, we replace it with 

replicate for a small batch.
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§ The whole pipeline allows taking batches one by one.

Batch Processing in the Pipeline
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Random Keys

Replicates

JOIN

. . .

GROUP BY

SUM for density ρ
MIN for distance δ

At batch t,

ρt = SUM + ρt-1
δt = min(MIN, δt-1)Instead of taking all data, we replace it with 

replicate for a small batch.



© 2018 Adobe Systems Incorporated.  All Rights Reserved.  Adobe Confidential.

Tradeoff between Number of Batches and Shuffles

37

The greater number of batches, the more 

shuffle stages are needed.

The greater number of batches, the fewer 

chances to have long bottlenecks and large 

shuffle data.

∴ While increasing number of batches can 

reduce the memory needed, there is an 

equilibrium in runtime.

The equilibrium depends on hardware 

specifications.
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User Interface for Interactive Visitor Clustering
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User Interface for Interactive Visitor Clustering
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Interactively segment 
the visitors into 3 groups
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User Interface for Interactive Visitor Clustering

40

Further split a 
selected segment
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User Interface for Interactive Visitor Clustering

41

Inspect the useful 
traits inside a 

destinated segment
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Conclusions and Future Work

§ Applying LSH and DP clustering to enable interactive clustering on sparse 
online visitor data.

§ Designing speed up strategies for clustering pipeline in a distributed 
environment. 

§ Future Work:
§ Further reduce the uneven data distribution in LSH Join

§ The increasing number of hash tables in LSH worsen the data distribution easily.

42
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